Locally adaptive spatial smoothing using conditional auto-regressive models
نویسندگان
چکیده
منابع مشابه
Combining Regressive and Auto-Regressive Models for Spatial-Temporal Prediction
A two-phased method for prediction in spatialtemporal domains is proposed. After an ordinary regression model is trained on spatial data, a prediction is adjusted by incorporating autoregressive modeling of residuals in time. The prediction accuracy of the proposed method is evaluated on simulated agricultural data with a significant improvement of accuracy for both linear and non-linear regres...
متن کاملDepth Recovery Using an Adaptive Color-Guided Auto-Regressive Model
This paper proposes an adaptive color-guided auto-regressive (AR) model for high quality depth recovery from low quality measurements captured by depth cameras. We formulate the depth recovery task into a minimization of AR prediction errors subject to measurement consistency. The AR predictor for each pixel is constructed according to both the local correlation in the initial depth map and the...
متن کاملAdaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum
A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...
متن کاملDistributed modal identification using restricted auto regressive models
Advances in Wireless Sensor Networks (WSN) technology have provided promising possibilities in detecting a change in the state of a structure through monitoring its features estimated using sensor data. The natural vibration properties of the structure are a set of features commonly used for this purpose and are often estimated using a multivariate autoregressive model (AR model) for the measur...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series C (Applied Statistics)
سال: 2013
ISSN: 0035-9254
DOI: 10.1111/rssc.12009